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Preface

Prelude to Programming: Concepts & Design provides a language-independent intro-
duction to programming concepts that helps students learn the following:

●	 General programming topics, such as data types, control structures, arrays, 
files, functions, and subprograms

●	 Structured programming principles, such as modular design, proper program 
documentation and style, and event-driven and object-oriented program 
design

●	 Basic tools and algorithms, such as data validation, defensive programming, 
sums and averages computation, and searching and sorting algorithms

●	 Real programming experience through the optional use of RAPTOR, a free 
flowchart-based programming environment

●	 Data representation of integer and floating point numbers

No prior computer or programming experience is necessary.

Changes to the Sixth Edition
There are significant and exciting changes in this edition. The text continues to 
strive to enhance learning programming concepts and to provide students with an 
enriched experience. Throughout the text, concepts build from clear and simple 
introductory explanations to complex and challenging Examples and Review Exer-
cises. Major improvements include the following:

●	 Rather than relegating the material on data representation to Appendices, 
an entire chapter is devoted to these concepts. This chapter is completely 
independent of the rest of the content and can be skipped with no loss of 
continuity. However, instructors who want to include the material now have 
more examples and end-of-chapter Review Exercises.

●	 Chapter 0 has been revised with up-to-date content relating to new 
technologies.

●	 Chapter 1 has been revised and now includes information on the Boolean 
data type.

●	 The material on arrays, searching, and sorting has been divided into 
two chapters. Chapter 7 focuses on creating and using both one- and 
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16 Preface

two-dimensional arrays. Chapter 8 presents algorithms with extensive exam-
ples for searching and sorting.

●	 The text uses RAPTOR, a free flowcharting software application that allows 
students to create and run programs without focusing on syntax. Each chap-
ter, from Chapter 3 on, includes an optional section devoted to learning 
RAPTOR and using RAPTOR to develop interesting, executable programs.

●	 Throughout the text Examples, Self Checks, and Review Exercises have 
been redesigned when necessary to ensure that they can be worked with or 
without RAPTOR.

●	 The Review Exercises in each chapter contain Multiple Choice, True/False, 
Short Answer, and a Programming Challenges section. All Challenge prob-
lems are suitable for RAPTOR.

●	 When real code is given throughout the text, JavaScript code has been added.
●	 More built-in functions and properties are introduced including 

Length_Of(), To_ASCII(), To_Character(), Indexing[], and more.
●	 The content in Chapter 11 on object-oriented programming has been thor-

oughly revised and simplified.
●	 New material on event-driven programming has been added to Chapter 11.

Organization of the Text
The text is written and organized to allow flexibility in covering topics. Material is 
presented in such a way that it can be used in any introductory programming course at 
any level. Each concept is presented in a clear, easily understood manner and the level 
of difficulty builds slowly. The What & Why sidebars give students the opportunity 
to think above and beyond the material in the Examples and encourage discussion and 
student interaction. The Making it Work sidebars demonstrate how concepts are 
applied in the real world. Examples, Self Checks, and Review Exercises increase 
in difficulty from most basic to very challenging. The Programming Challenges 
sections at the end of each chapter give students a chance to create longer, compre-
hensive programs from scratch and, if RAPTOR is used, they can run the programs 
and see the results.

The text has been designed so that instructors can use it for students at various levels. 
The core of the text consists of Chapter 1 and Chapters 3–7. Chapters 0 and 2 are 
optional; Chapter 2 in particular covers material that is relatively complex and may 
be skipped without consequence. Chapters 8–11 are independent of one another 
except that some material in Chapter 9 is required to understand Chapter 11. Thus, 
the text lends itself to a custom book adoption.

Chapter Summaries
●	 Chapter 0 provides an overview of general computer concepts.
●	 Chapter 1 discusses basic problem solving strategy and the essential compo-

nents of a computer program (input, processing, and output). A section on 
data types introduces students to numeric, string, and Boolean types.

A01_VENI1535_06_GE_FM.indd   16 03/11/14   12:36 PM



 Preface 17

●	 Chapter 2 is dedicated to data representation. Students learn to convert 
decimal numbers to binary and hexadecimal. The various ways to repre-
sent integers (unsigned, signed, two’s complement) as well as floating point 
numbers are covered. IEEE standards are used to represent floating point 
numbers in single- and double-precision. The material in this chapter is 
completely independent from the rest of the book.

●	 Chapter 3 introduces the program development process, the principles 
of modular design, pseudocode, and flowcharts. Documentation, testing, 
syntax and logic errors, and an overview of the basic control structures are 
covered.

●	 Chapter 4 covers decision (selection) structures including single-, dual- and 
multiple-alternative structures, relational and logical operators, the ASCII 
coding scheme, defensive programming, and menu-driven programs.

●	 Chapters 5 and 6 present a complete coverage of repetition structures 
(loops). Chapter 5 focuses on the basic loop structures: pre- and post-test 
loops,  sentinel-controlled loops, counter-controlled loops, and loops for 
data input, data validation, and computing sums and averages. Chapter 6 
builds on the basics from the previous chapters to create programs that use 
repetition structures in combination with decision structures, nested loops, 
and random numbers.

●	 Chapter 7 covers one-dimensional, two-dimensional, and parallel arrays. 
Representation of character strings as arrays is also discussed. The material 
in this chapter has been expanded from the previous edition, including more 
examples to assist students in understanding this difficult material.

●	 Chapter 8 covers searching and sorting. Two search techniques (serial and 
binary searches) and two sort techniques (bubble and selection sorts) are 
included with expanded coverage.

●	 Chapter 9 covers functions and modules, including the use of arguments 
and parameters, value and reference parameters, passing by reference ver-
sus passing by value, and the scope of a variable. Built-in and user-defined 
functions are covered. Recursion—an advanced topic—is discussed in some 
depth but can be skipped if desired.

●	 Chapter 10 is about sequential data files. The discussion covers records and 
fields and how to create, write, and read from sequential files. Topics also 
include how to delete, modify, and insert records, and how to merge files. 
Arrays are used in conjunction with data files for file maintenance. The con-
trol break processing technique is demonstrated in a longer program.

●	 Chapter 11 is an introduction to the concepts of object-oriented program-
ming and event-driven programming. The object-oriented material in 
this chapter has been revised for better understandability. The material on 
event-driven programming is new to this edition. A short introduction to 
modeling languages, including UML is given. Object-oriented design topics 
include classes (parent and child), objects, inheritance, polymorphism, pub-
lic versus private attributes and methods, and the use of constructors. The 
material on event-driven programming includes the graphical user interface 
and window components. Properties and methods for various window con-
trols are also covered.
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Many sections throughout the text are devoted to more advanced applications 
and are optional. In particular, the Focus on Problem Solving sections develop 
relatively complex program designs, which some instructors may find useful to 
illustrate the chapter material and others may elect to skip to save time. RAPTOR 
can be used as a tool to illustrate concepts by creating examples throughout the text 
in RAPTOR but can also be used to create longer and more challenging, creative 
programs.

Running With RAPTOR: A Flowcharting 
Environment
In this edition, each chapter from Chapter 3 onward contains an optional section 
entitled Running With RAPTOR. The section describes how to use RAPTOR 
for that chapter’s material with screenshots and step-by-step instructions. Short 
examples demonstrate how RAPTOR is used to work with the chapter’s content and 
a longer program is developed. In many chapters the RAPTOR program is an imple-
mentation of the long program developed in the Focus on Problem Solving section. 
The Running With RAPTOR sections can be skipped with no loss of continuity. 
However, if used, the longer RAPTOR programs give students a real-life experience 
by creating interesting, running programs including games, encryption, and more.

Features of the Text
In the Everyday World
Beginning with Chapter 1, each chapter starts with a discussion of how the mate-
rial in that chapter relates to familiar things (for example, “Arrays in the Everyday 
World”) This material provides an introduction to the programming logic used 
in that chapter through an ordinary and easily understood topic, and establishes a 
foundation upon which programming concepts are presented.

Making It Work
The Making It Work sidebars provide information about how to implement con-
cepts in an actual high-level language, such as C++, Java, JavaScript, or Visual Basic. 
These boxed sidebars appear throughout the text and are self-contained and optional.

What & Why
Often we conclude an Example with a short discussion about what would happen 
if the program were run, or what would happen if something in the program were 
changed. These What & Why sidebars help students deepen their understanding 
of how programs run. They are useful in initiating classroom discussion.

Making
It Work

What
&Why?
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Pointers and Style Pointers
The concepts of programming style and documentation are introduced in Chapter 3 
and emphasized throughout. Other Pointers appear periodically throughout the 
text. These short notes provide insight into the subject or specialized knowledge 
about the topic at hand.

Examples
There are more than 200 numbered worked Examples in the text. The pseudocode 
in the Examples includes line numbers for easy reference. Detailed line-by-line 
discussions follow the code with sections entitled What Happened?

Focus on Problem Solving
Each chapter from Chapter 4 to the end includes a Focus on Problem Solving 
section which presents a real-life programming problem, analyzes it, designs a pro-
gram to solve it, discusses appropriate coding considerations, and indicates how the 
program can be tested. In the process, students not only see a review of the chapter 
material, but also work through a programming problem of significant difficulty. 
These sections are particularly useful to prepare students for a language-specific 
programming course.

Exercises
Many new exercises have been added to this edition to correspond with new material. 
Many exercises have been revised to permit them to be implemented with RAPTOR. 
The text contains the following diverse selection:

●	 Self Checks at the end of each section include items that test students’ 
understanding of the material covered in that section (answers to Self 
Checks are in Appendix C)

●	 Review Questions at the end of each chapter include questions of various 
types that provide further review of the chapter material (Answers to the 
questions are available on the instructor resource center).

●	 Programming Challenges at the end of each chapter require students 
to design programs using the material learned in that chapter and earlier 
chapters. All Programming Challenges can be implemented with RAPTOR. 
Solutions to all Programming Challenges in RAPTOR are available on the 
instructor resource center.

Style
Pointer
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Supplements

Instructor’s Supplements
Supplemental materials are available to qualified instructors at www.pearsonglobal 
editions.com/Venit, including the following:

●	 PowerPoint Presentations for all Chapters
●	 Solutions to all Self Checks including RAPTOR implementations of select 

problems
●	 Solutions to all Review Exercises including corresponding RAPTOR 

programs
●	 RAPTOR programs corresponding to all Programming Challenges
●	 Testbank

For further information about obtaining instructor supplements, contact your cam-
pus Pearson Education sales representative.
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Introduction

In this introduction, we will discuss the history of computers and com-
puter hardware and software—the devices and programs that make a computer 
work.

After reading this introduction, you will be able to do the following:
●	 Understand the evolution of computing devices from ancient Babylonia to 

the twenty-first century
●	 Understand the components that make up a typical computer system: the 

central processing unit, internal memory, mass storage, and input and  
output devices

●	 Know the types of internal memory—RAM and ROM—and understand 
their functions

●	 Know the types of mass storage: magnetic, optical, solid state, and online 
storage

●	 Know the types of software used by a modern computer: application soft-
ware and system software

●	 Know the levels of programming languages: machine language, assembly 
language, and high-level language

●	 Know the types of programming and scripting languages used to create 
software

●	 Understand the distinction between programming and scripting languages

0
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Computers Everywhere

A century ago, a child would listen in wonder as his parents described what life 
was like before cars, electricity, and telephones. Today, a child listens in wonder 
as his parents describe what life was like without video games, smart phones, GPS 
systems, and computers. Seventy years ago, electronic computers didn’t exist. Now, 
we use computers daily. Computers are in homes, schools, and offices; in super-
markets and fast food restaurants; on airplanes and submarines. Computers are in 
our phones, kitchen appliances, and cars. We carry them in our backpacks, pockets, 
and purses. They are used by the young and old, filmmakers and farmers, bankers 
and baseball managers. By taking advantage of a wealth of diverse and sophisticated 
software (programs and apps), we are able to use computers almost limitlessly for 
education, communication, entertainment, money management, product design 
and manufacture, and business and institutional processes.

In the 
Everyday 

World

0.1  A Brief History of Computers
Calculators, devices used to increase the speed and accuracy of numerical compu-
tations, have been around for a long time. For example, the abacus, which uses rows 
of sliding beads to perform arithmetic operations, has roots that date back more 
than 5,000 years to ancient Babylonia. More modern mechanical calculators, using 
gears and rods, have been in use for almost 400 years. In fact, by the late nineteenth 
century, calculators of one sort or another were relatively commonplace. However, 
these machines were by no means computers as we use the word today.

What Is a Computer?
A computer is a mechanical or an electronic device that can efficiently store, 
retrieve, and manipulate large amounts of information at high speed and with great 
accuracy. Moreover, it can execute tasks and act upon intermediate results without 
human intervention by carrying out a list of instructions called a program.

Although we tend to think of the computer as a recent development, Charles 
Babbage, an Englishman, designed and partially built a true computer in the mid-
1800s. Babbage’s machine, which he called an Analytical Engine, contained hun-
dreds of axles and gears and could store and process 40-digit numbers. Babbage was 
assisted in his work by Ada Augusta Byron, the daughter of the poet Lord Byron. 
Ada Byron grasped the importance of the invention and helped to publicize the 
project. A major programming language (Ada) was named after her. Unfortunately, 
Babbage never finished his Analytical Engine. His ideas were too advanced for the 
existing technology, and he could not obtain enough financial backing to complete 
the project.

Serious attempts to build a computer were not renewed until nearly 70 years 
after Babbage’s death. Around 1940, Howard Aiken at Harvard University, John 
Atanasoff, and Clifford Berry at Iowa State University built machines that came close 
to being true computers. However, Aiken’s Mark I could not act independently on 
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its intermediate results, and the Atanasoff-Berry computer required the frequent 
intervention of an operator during its computations.

Just a few years later in 1945, a team at the University of Pennsylvania, led by 
John Mauchly and J. Presper Eckert, completed work on the world’s first fully 
operable electronic computer. Mauchly and Eckert named it ENIAC, an acronym 
for Electronic Numerical Integrator and Computer. ENIAC (see Figure 0.1) was 
a huge machine. It was 80 feet long, 8 feet high, weighed 33 tons, contained over 
17,000 vacuum tubes in its electronic circuits, and consumed 175,000 watts of elec-
tricity. For its time, ENIAC was a truly amazing machine because it could accu-
rately perform up to 5,000 additions per second. However, by current standards, it 
was exceedingly slow. A modern run-of-the-mill personal computer can exceed 100 
million operations per second!

For the next decade or so, all electronic computers used vacuum tubes (see 
Figure 0.2) to do the internal switching necessary to perform computations. These 
machines, which we now refer to as first-generation computers, were large by mod-
ern standards, although not as large as ENIAC. They required a climate-controlled 
environment and a lot of tender love and care to keep them operating. By 1955, 
about 300 computers—built mostly by IBM and Remington Rand—were being 
used, primarily by large businesses, universities, and government agencies.

Figure 0.1 The ENIAC computer 

Source: U.S. Army
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By the late 1950s, computers had become much faster and more reliable. The most 
significant change at this time was that the large, heat-producing vacuum tubes 
were replaced by relatively small transistors. The transistor (see Figure 0.3) is one 
of the most important inventions of the twentieth century. It was developed at Bell 
Labs in the late 1940s by William Shockley, John Bardeen, and Walter Brattain, 
who later shared a Nobel Prize for their achievement. Transistors are small and 
require very little energy, especially compared to vacuum tubes. Therefore, many 
transistors can be packed close together in a compact enclosure.

In the early 1960s, Digital Equipment Corporation (DEC) took advantage of small, 
efficient packages of transistors called integrated circuits to create the minicom-
puter, a machine roughly the size of a four-drawer filing cabinet. Because these 
computers not only were smaller but also less expensive than their predecessors, 
they were an immediate success. Nevertheless, sales of larger computers, now 
called mainframes, also rapidly increased. The computer age had clearly arrived 
and the industry leader was the IBM innovative System 360.

Personal Computers
Despite the increasing popularity of computers, it was not until the late 1970s that 
the computer became a household appliance. This development was made possible 
by the invention of the microchip (see Figure 0.4) in the 1960s. A microchip is a 
piece of silicon about the size of a postage stamp, packed with thousands of electronic 
components. The microchip and its more advanced cousin, the microprocessor, 
led to the creation of the world’s first personal computer (PC) in 1974. The PC 

Figure 0.2 A vacuum tube 

Figure 0.3 An early transistor 
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was relatively inexpensive compared to its predecessors and was small enough to 
fit on a desktop. This landmark computer, the Altair 8800 microcomputer, was 
unveiled in 1975. Although it was a primitive and not a very useful machine, the 
Altair inspired thousands of people, both hobbyists and professionals to become 
interested in PCs. Among these pioneers were Bill Gates and Paul Allen, who later 
founded Microsoft Corporation, now one of the world’s largest companies.

Apple Computers and the IBM PC
The Altair also captured the imagination of two young Californians, Stephen 
Wozniak and Steven Jobs. They were determined to build a better, more use-
ful computer. They founded Apple Computer, Inc., and in 1977 they introduced 
the Apple II, which was an immediate hit. With the overwhelming success of this 
machine and Tandy Corporation’s TRS-80, companies that were manufacturing 
larger minicomputers and mainframes began to notice. In 1981, IBM introduced 
the popular IBM PC (see Figure 0.5), and the future of the PC was assured.

 

Figure 0.4 The microchip 

Figure 0.5 The IBM PC, introduced in 1981, is an antique now! 
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Many companies hoping to benefit from the success of the IBM PC, introduced com-
puters that could run the same programs as the IBM, and these “IBM compatibles” 
soon dominated the market. Even the introduction of Apple’s innovative and easy-
to-use Macintosh in 1984 could not stem the tide of the IBM compatibles. These 
computers, virtually all of which make use of Microsoft’s Windows operating system, 
have also spawned a huge array of software (computer programs) never dreamed 
of by the manufacturers of the original mainframes. This software includes word 
processors, photo editing programs, Web browsers, spreadsheet programs, database 
systems, presentation graphics programs, and a seemingly infinite variety of com-
puter games. However, while in 2000 the Windows operating system commanded 
more than 95% of the market share, today’s mobile devices, such as smart phones 
and tablets, have reduced Microsoft’s domination drastically with Google’s Android 
operating system and the Apple operating system providing strong competition.

Today’s Computers
Today the computer market comprises a vast array of machines. Personal comput-
ers are everywhere and range in price from a few hundred to a few thousand dol-
lars. For the most part, their manufacturers are billion dollar companies like IBM, 
Dell, Hewlett-Packard, and Apple. Although PCs are small and inexpensive, they 
produce a remarkable amount of computing power. Today’s tablets, which can 
weigh less than a pound and fit into a handbag, are far more powerful than the most 
advanced mainframes of the mid-1970s (see Figure 0.6).

Minicomputers have also found their niche. Unlike PCs, these machines can be used 
by a number of people (typically 16 or more) working simultaneously at separate 
and remote terminals. Each terminal consists of a keyboard and a display screen. 
Minicomputers have become the mainstay of many small businesses and universi-
ties, but mainframe computers are by no means dinosaurs. These relatively large 
and costly machines supply users with tremendous power to manipulate informa-
tion. Supercomputers (see Figure 0.7) are even more powerful than mainframes 
and can process well over 1 billion instructions per second. For a special effects 
company like Industrial Light and Magic or a government agency like the Internal 
Revenue Service, there is no substitute for a large mainframe or supercomputer.

Figure 0.6 Today’s laptop and tablet computers 
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