
This is a special edition of an established title widely
used by colleges and universities throughout the world.
Pearson published this exclusive edition for the benefit
of students outside the United States and Canada. If you
purchased this book within the United States or Canada,
you should be aware that it has been imported without
the approval of the Publisher or Author.

Pearson Global Edition

GlobAl
edITIon

GlobAl
edITIon

For these Global editions, the editorial team at Pearson has
collaborated with educators across the world to address a wide
range of subjects and requirements, equipping students with the best
possible learning tools. This Global edition preserves the cutting-edge
approach and pedagogy of the original, but also features alterations,
customization, and adaptation from the north American version.

Venit
d

rake
SIX

T
H

ed

IT
Io

n
Prelude to Program

m
ing

Concepts and D
esign

G
lo

b
A

l
ed

IT
Io

n

Prelude to Programming
Concepts and Design
SIXTH edITIon

Stewart Venit • Elizabeth Drake

VENIT_1292061537_mech.indd 1 25/09/14 8:45 AM

Online Access

Thank you for purchasing a new copy of Prelude to Programming: Concepts
and Design, Sixth Edition, Global Edition. Your textbook includes one year of prepaid
access to the book’s Companion Website. This prepaid subscription provides you with
full access to the following student support areas:

• Video notes

• Answers to Review Questions

• Answers to Self-Check Questions

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Prelude to Programming: Concepts and Design, Sixth Edition, Global
Edition, Companion Website for the first time, you will need to register online using
a computer with an Internet connection and a web browser. The process takes just a
 couple of minutes and only needs to be completed once.

1. Go to www.pearsonglobaleditions.com/Venit

2. Click on Companion Website.

3. Click on the Register button.

4. On the registration page, enter your student access code* found beneath the scratch-
off panel. Do not type the dashes. You can use lower- or uppercase.

5. Follow the on-screen instructions. If you need help at any time during the online
registration process, simply click the Need Help? icon.

6. Once your personal Login Name and Password are confirmed, you can begin using
the Prelude to Programming: Concepts and Design Sixth Edition, Global Edition
Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in
any time at www.pearsonglobaleditions.com/Venit by providing your Login Name and
Password when prompted.

*Important: The access code can only be used once. This subscription is valid for one year
upon activation and is not transferable. If this access code has already been revealed, it
may no longer be valid. If this is the case, you can purchase a subscription by going to
www.pearsonglobaleditions.com/Venit and following the on-screen instructions.

VENIT_1292061537_ifc.indd 1 25/09/14 8:34 PM

Prelude
toProgramming
Sixth Edition
Global Edition

Concepts and Design

Stewart Venit | Elizabeth Drake

Boston Columbus Indianapolis New York San Francisco
Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan
Munich Paris Montréal Toronto Delhi Mexico City Sáo Paulo Sydney

Hong Kong Seoul Singapore Taipei Tokyo

A01_VENI1535_06_GE_FM.indd 1 03/11/14 12:36 PM

Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Program Manager: Kayla Smith-Trabox
Director of Marketing: Christy Lesko
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferranti
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Senior Project Manager: Marilyn Lloyd
Operations Supervisor: Vincent Scelta
Operations Specialist: Linda Sager
Head of Learning Asset Acquisition, Global Edition:

Laura Dent

Assistant Acquisitions Editor, Global Edition:
Aditee Agarwal

Project Editor, Global Edition: Amrita Naskar
Manager, Media Production, Global Edition: Vikram Kumar
Senior Manufacturing Controller, Production,

Global Edition: Trudy Kimber
Text Designer: Gillian Hall
Cover Designer: Lumina Datamatics Ltd.
Manager, Visual Research: Karen Sanatar
Permissions Supervisor: Michael Joyce
Permission Administrator: Jenell Forschler
Cover Image: aimy27feb/Shutterstock
Media Project Manager: Renata Butera

Credits:

Figure 0.1 U. S. Army Center of Military History; Figure 0.2 dule964/Fotolia; Figure 0.3 Shutterstock/Stu49; Figure 0.4a Jultud/
Fotolia; Figure 0.4b Giuseppe Lancia/Fotolia; Figure 0.5 Fotosearch/Publitek, Inc.; Figure 0.7 National Center for Computational
Sciences; Figure 6a Chuck/Alamy; Figure 6b Marian Stanca/Alamy; Figure 11.01a Shutterstock; Figure 11.01b Shutterstock

Screenshots throughout the entire text: RAPTOR is provided free courtesy of the United States Air Force Academy, http://raptor.
martincarlisle.com/

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Stewart Venit and Elizabeth Drake to be identified as the authors of this work have been asserted by them in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Prelude to Programming: Concepts and Design, 6/e, ISBN 978-0-13-374163-6,
by Stewart Venit and Elizabeth Drake, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher
or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House,
6–10 Kirby Street, London EC 1N 8TS.

All trademarks used herein are the property of their respective owners.The use of any trademark in this text does not vest in the
author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation
with or endorsement of this book by such owners.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those des-
ignations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

ISBN 10: 1-292-06153-7
ISBN 13: 978-1-292-06153-5

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Typeset by Laserwords Pvt. Ltd

A01_VENI1535_06_GE_FM.indd 2 03/11/14 12:36 PM

3

Brief Contents

Preface 15

 0 Introduction 23
 1 An Introduction to Programming 47
 2 Data Representation 89
 3 Developing a Program 135
 4 Selection Structures: Making Decisions 201
 5 Repetition Structures: Looping 277
 6 More about Loops and Decisions 351
 7 Arrays: Lists and Tables 429
 8 Searching and Sorting Arrays 487
 9 Program Modules, Subprograms, and Functions 549
10 Sequential Data Files 621
11 Object-Oriented and Event-Driven Programming 677

Appendix A: Study Skills 749
Appendix B: The ASCII Character Set: Printable Characters 757
Appendix C: Answers to Self Checks 761

Index 801

A01_VENI1535_06_GE_FM.indd 3 03/11/14 12:36 PM

A01_VENI1535_06_GE_FM.indd 4 03/11/14 12:36 PM

 5

Contents

Preface 15

 0 Introduction 23

In the Everyday World: You Are Already a Programmer! 24
0.1 A Brief History of Computers 24

What Is a Computer? 24
Personal Computers 26
The Internet 29

0.2 Computer Basics 30
The Central Processing Unit 31
Internal Memory 31
Mass Storage Devices 32
Input Devices 34
Output Devices 34

0.3 Software and Programming Languages 36
Types of Software 36
Types of Programming and Scripting Languages 37

Chapter Review and Exercises 41

 1 An Introduction to Programming 47

In the Everyday World: You Are Already a Programmer! 48
1.1 What Is Programming? 48

A General Problem-Solving Strategy 49
Creating Computer Programs: The Program Development Cycle 50

1.2 Basic Programming Concepts 51
A Simple Program 51
Data Input 54
Program Variables and Constants 56

1.3 Data Processing and Output 59
Processing Data 59
Data Output 63

1.4 Data Types 67
The Declare Statement 67

A01_VENI1535_06_GE_FM.indd 5 03/11/14 12:36 PM

6 Contents

Character and String Data 67
1.5 Integer Data 70

Operations on Integers 71
1.6 Floating Point Data 72

The Declare Statement Revisited 73
Types of Floating Point Numbers 75

1.7 Running With RAPTOR (Optional) 80
Introducing RAPTOR 80

Chapter Review and Exercises 82

 2 Data Representation 89

In the Everyday World: It Isn’t Magic—It’s Just Computer Code 90
2.1 Decimal and Binary Representation 90

Bases and Exponents 90
The Binary System 92

2.2 The Hexadecimal System 95
Hexadecimal Digits 95
Using Hexadecimal Notation 99

2.3 Integer Representation 102
Unsigned Integer Format 102
Sign-and-Magnitude Format 103
One’s Complement Format 106
Two’s Complement Format 108

2.4 Floating Point Representation 113
Floating Point Numbers: the Integer Part 113
Floating Point Numbers: the Fractional Part 113
Converting a Decimal Fraction to Binary 115
Putting the Two Parts Together 118

2.5 Putting it All Together 119
Scientific Notation 119
Exponential Notation 120
Base 10 Normalization 121
Normalizing Binary Floating Point Numbers 122
The Excess_127 System 122
Base 2 Normalization 123
Single- and Double-Precision Floating Point Numbers 123
Hexadecimal Representation 126

Chapter Review and Exercises 128

 3 Developing a Program 135

In the Everyday World: Planning to Program? You Need a Plan 136
3.1 The Program Development Cycle 137

The Process of Developing a Program 137
Additional Steps in the Cycle 140

3.2 Program Design 144
Modular Programming 144

A01_VENI1535_06_GE_FM.indd 6 03/11/14 12:36 PM

 Contents 7

3.3 Coding, Documenting, and Testing a Program 153
Coding and Documenting a Program 153
Testing a Program 155
Types of Errors 156

3.4 Commercial Programs: Testing and Documenting 157
The Testing Phase Revisited 158
External Documentation 158

3.5 Structured Programming 160
Flowcharts 160
Control Structures 165
Programming Style 168

3.6 Running With RAPTOR (Optional) 169
Getting Started 170
Introduction to RAPTOR Symbols 171
Variables 173
RAPTOR Symbols 177
Run It: The Sign-In Program 186
Developing the Program 187
Creating the Program in RAPTOR: Input 187
Creating the Program in RAPTOR: Processing 190
Creating the Program in RAPTOR: Output 191
Check It Out 192

Chapter Review and Exercises 194

 4 Selection Structures: Making Decisions 201

In the Everyday World: Decisions, Decisions, Decisions . . . 202
4.1 An Introduction to Selection Structures 203

Types of Selection Structures 203
Single- and Dual-Alternative Structures 204

4.2 Relational and Logical Operators 210
Relational Operators 210
Logical Operators 213
Hierarchy of Operations 218

4.3 ASCII Code and Comparing Strings 221
Representing Characters With Numbers 221

4.4 Selecting from Several Alternatives 225
Using If Structures 225
Using Case-Like Statements 228

4.5 Applications of Selection Structures 232
Defensive Programming 232
Menu-Driven Programs 236

4.6 Focus on Problem Solving: A New Car Price Calculator 238
Problem Statement 238
Problem Analysis 239
Program Design 239
Program Code 242
Program Test 242

A01_VENI1535_06_GE_FM.indd 7 03/11/14 12:36 PM

8 Contents

4.7 Running With RAPTOR (Optional) 243
The Selection Symbol 243
The Call Symbol and Subcharts 246
An Example 248
Run It: The New Car Price Calculator 254
Developing the Program 254
Check It Out 264

Chapter Review and Exercises 265

 5 Repetition Structures: Looping 277

In the Everyday World: Doing the Same Thing Over and Over
and Knowing When to Stop 278
5.1 An Introduction to Repetition Structures: Computers Never

Get Bored! 279
Loop Basics 279
Relational and Logical Operators 283

5.2 Types of Loops 285
Pre-Test and Post-Test Loops 285
Counter-Controlled Loops 290

5.3 The For Loop 296
The For Statement 297
The For Loop in Action 300
The Careful Bean Counter 303

5.4 Applications of Repetition Structures 308
Using Sentinel-Controlled Loops to Input Data 308
Data Validation 312
The Floor() and Ceiling() Functions 316
Computing Sums and Averages 319

5.5 Focus on Problem Solving: A Cost, Revenue, and Profit
Problem 324
Problem Statement 324
Problem Analysis 324
Program Design 326
Program Code 329
Program Test 329

5.6 Running With RAPTOR (Optional) 330
Repetition: The Loop Symbol 330
A Short Example 332
Run It: Encryption: The Secret Message Encoder 334
What is Encryption? 335
Problem Statement 335
Developing the Program 335
Developing the Encrypting Algorithms 336
Check It Out 342

Chapter Review and Exercises 343

A01_VENI1535_06_GE_FM.indd 8 03/11/14 12:36 PM

 Contents 9

 6 More about Loops and Decisions 351

In the Everyday World: Loops Within Loops 352
6.1 Combining Loops with If-Then Statements 352

Exiting a Loop 353
6.2 Combining Loops and Decisions in Longer Programs 363

The Length_Of() Function 368
The Print Statement and the New Line Indicator 369

6.3 Random Numbers 373
The Random() Function 373
Not Really Random: The Pseudorandom Number 378

6.4 Nested Loops 379
Nested For Loops 379
Nesting Other Kinds of Loops 384
A Mental Workout: Mind Games 389

6.5 Focus on Problem Solving: A Guessing Game 396
Problem Statement 397
Problem Analysis 397
Program Design 398
Program Code 403
Program Test 403

6.6 Running With RAPTOR (Optional) 405
Two Short Examples 405
Run It: Validating a Password 409
Problem Statement 409
Developing the Program 409
Check the length of the password (26–30 characters) 411
Check the first character of the password (cannot be a number, 0–9) 413
Check that the password contains one of the special
characters (#, *, or $) 414

Chapter Review and Exercises 421

 7 Arrays: Lists and Tables 429

In the Everyday World: Organize It with Lists and Tables 430
7.1 One-Dimensional Arrays 431

Array Basics 431
7.2 Parallel Arrays 438

Some Advantages of Using Arrays 442
A Word About Databases 445

7.3 Strings as Arrays of Characters 446
Concatenation Revisited 446
String Length versus Array Size 448

7.4 Two-Dimensional Arrays 451
An Introduction to Two-Dimensional Arrays 452
Using Two-Dimensional Arrays 453

A01_VENI1535_06_GE_FM.indd 9 03/11/14 12:36 PM

10 Contents

7.5 Focus on Problem Solving: The Magic Square 458
Problem Statement 458
Problem Analysis 459
Program Design 460
Program Code 466
Program Test 466

7.6 Running With RAPTOR (Optional) 467
A Short Example 470
Run It: Self-Grading Math Test 472
Problem Statement 472
Developing and Creating the Program 472
Check It Out 478

Chapter Review and Exercises 481

 8 Searching and Sorting Arrays 487

In the Everyday World: Searching and Sorting 488
8.1 Introduction to Searching and Sorting 488

The Serial Search Technique 488
Basic Steps in a Serial Search 489
Pseudocode for a Serial Search 490

8.2 The Bubble Sort Technique 493
Swapping Values 494
Using the Bubble Sort Algorithm 496

8.3 The Binary Search 502
Use the Binary Search for Large Arrays 503

8.4 The Selection Sort 508
General Selection Sort Technique 508
Applying the Selection Sort Technique 510

8.5 Focus on Problem Solving: A Grade Management Program 513
Problem Statement 513
Problem Analysis 513
Program Design 515
Program Code 521
Program Test 522

8.6 Running With RAPTOR (Optional) 522
The Serial Search 522
The Bubble Sort 525
The Binary Search 527
The Selection Sort 529
Run It: Soccer Camp 531
Problem Statement 531
Developing and Creating the Program 531
Check It Out 537
Revise and Improve 538
Check It Out 539

Chapter Review and Exercises 541

A01_VENI1535_06_GE_FM.indd 10 03/11/14 12:36 PM

 Contents 11

 9 Program Modules, Subprograms, and Functions 549

In the Everyday World: Living and Programming in Manageable
Pieces: Subprograms 550
 9.1 Data Flow Diagrams, Arguments, and Parameters 551

A Big Sale: The Sale Price Computation Program 551
Data Flow Diagrams 552
An Introduction to Arguments and Parameters 553

 9.2 More about Subprograms 559
Value and Reference Parameters 559
How to Tell the Difference between Value and Reference
Parameters 561
Two Helpful Functions: ToUpper() and ToLower() 564
The Scope of a Variable 567

 9.3 Functions 572
Built-in Functions 572
User-Defined Functions 575

 9.4 Recursion 580
The Recursive Process 580

 9.5 Focus on Problem Solving: A Fitness Plan 585
Problem Statement 585
Problem Analysis 585
Program Design 586
Program Code 592
Program Test 592

 9.6 Running With RAPTOR (Optional) 595
RAPTOR Built-In Functions (Procedures) 595
Creating a New Procedure 598
Run It: The Fitness Plan 603
Problem Statement 603
Developing and Creating the Program 604
Check It Out 612

Chapter Review and Exercises 614

 10 Sequential Data Files 621

In the Everyday World: Keeping it On File 622
 10.1 An Introduction to Data Files 623

File Basics 623
Creating and Reading Sequential Files 625

 10.2 Modifying a Sequential File 630
Deleting Records 631
Modifying Records 634
Inserting Records 635
Using Arrays in File Maintenance 637

 10.3 Merging Sequential Files 639

A01_VENI1535_06_GE_FM.indd 11 03/11/14 12:36 PM

12 Contents

 10.4 Focus on Problem Solving: Control Break Processing 642
Problem Statement 642
Problem Analysis 643
Program Design 644
Coding and Testing the Program 647

 10.5 Focus on Problem Solving: The Invoice Preparation
Program 647
Problem Statement 648
Problem Analysis 648
Program Design 649
Program Code 653
Program Test 653

 10.6 Running With RAPTOR (Optional) 654
Creating Data Files with the Redirect_Output() Procedure 654
Displaying Data Files with the Redirect_Input() Procedure 655
The Limitations 658
Run It: Professor Weisheit’s Semester Grades 659
Check It Out 667

Chapter Review and Exercises 669

 11 Object-Oriented and Event-Driven Programming 677

In the Everyday World: Objects are Everywhere 678
 11.1 Classes and Objects 678

Classes 678
Defining Classes and Creating Objects 681
Creating Objects 683
The Constructor 685

 11.2 More Features of Object-Oriented Programming 686
Benefits of Object-Oriented Languages 686
Inheritance and Polymorphism 687

 11.3 Object-Oriented Program Design and Modeling 697
Modeling Languages 700
Unified Modeling Language (UML) 700

 11.4 Graphical User Interfaces and Event-Driven
Programming 703
Window Components 703
Creating GUI Objects in a Program 704
Event-Driven Programming 706
Handling Events 706
Event-Driven Program Design 709

 11.5 Focus on Problem Solving: Another Grade Management
Program 711
Problem Statement 711
Problem Analysis 711
Program Design 712
Program Code 717
Program Test 718

A01_VENI1535_06_GE_FM.indd 12 03/11/14 12:36 PM

 Contents 13

 11.6 Running With RAPTOR (Optional) 719
Object-Oriented Mode 719
Creating a Class 719
The main Program 726
Inheritance and Polymorphism 726
Run It: Monster Evasion 727
Problem Statement 727
Developing and Creating the Program 727
The main program 731
Using the Classes 735
Check It Out 738

Chapter Review and Exercises 740

Appendix A:
Study Skills 749
 A.1 Achieving Success in the Course 749
 A.2 Using the Textbook 750
 A.3 Doing the Homework 751
 A.4 Writing Programs 752
 A.5 Preparing for Tests 753
 A.6 More about Preparing for Tests 754
 A.7 Taking Tests 755
 A.8 Overcoming Test Anxiety 756

Appendix B:
The ASCII Character Set: Printable Characters 757

Appendix C:
Answers to Self Checks 761

Index 801

A01_VENI1535_06_GE_FM.indd 13 03/11/14 12:36 PM

A01_VENI1535_06_GE_FM.indd 14 03/11/14 12:36 PM

 15

Preface

Prelude to Programming: Concepts & Design provides a language-independent intro-
duction to programming concepts that helps students learn the following:

●	 General programming topics, such as data types, control structures, arrays,
files, functions, and subprograms

●	 Structured programming principles, such as modular design, proper program
documentation and style, and event-driven and object-oriented program
design

●	 Basic tools and algorithms, such as data validation, defensive programming,
sums and averages computation, and searching and sorting algorithms

●	 Real programming experience through the optional use of RAPTOR, a free
flowchart-based programming environment

●	 Data representation of integer and floating point numbers

No prior computer or programming experience is necessary.

Changes to the Sixth Edition
There are significant and exciting changes in this edition. The text continues to
strive to enhance learning programming concepts and to provide students with an
enriched experience. Throughout the text, concepts build from clear and simple
introductory explanations to complex and challenging Examples and Review Exer-
cises. Major improvements include the following:

●	 Rather than relegating the material on data representation to Appendices,
an entire chapter is devoted to these concepts. This chapter is completely
independent of the rest of the content and can be skipped with no loss of
continuity. However, instructors who want to include the material now have
more examples and end-of-chapter Review Exercises.

●	 Chapter 0 has been revised with up-to-date content relating to new
technologies.

●	 Chapter 1 has been revised and now includes information on the Boolean
data type.

●	 The material on arrays, searching, and sorting has been divided into
two chapters. Chapter 7 focuses on creating and using both one- and

A01_VENI1535_06_GE_FM.indd 15 03/11/14 12:36 PM

16 Preface

two-dimensional arrays. Chapter 8 presents algorithms with extensive exam-
ples for searching and sorting.

●	 The text uses RAPTOR, a free flowcharting software application that allows
students to create and run programs without focusing on syntax. Each chap-
ter, from Chapter 3 on, includes an optional section devoted to learning
RAPTOR and using RAPTOR to develop interesting, executable programs.

●	 Throughout the text Examples, Self Checks, and Review Exercises have
been redesigned when necessary to ensure that they can be worked with or
without RAPTOR.

●	 The Review Exercises in each chapter contain Multiple Choice, True/False,
Short Answer, and a Programming Challenges section. All Challenge prob-
lems are suitable for RAPTOR.

●	 When real code is given throughout the text, JavaScript code has been added.
●	 More built-in functions and properties are introduced including

Length_Of(), To_ASCII(), To_Character(), Indexing[], and more.
●	 The content in Chapter 11 on object-oriented programming has been thor-

oughly revised and simplified.
●	 New material on event-driven programming has been added to Chapter 11.

Organization of the Text
The text is written and organized to allow flexibility in covering topics. Material is
presented in such a way that it can be used in any introductory programming course at
any level. Each concept is presented in a clear, easily understood manner and the level
of difficulty builds slowly. The What & Why sidebars give students the opportunity
to think above and beyond the material in the Examples and encourage discussion and
student interaction. The Making it Work sidebars demonstrate how concepts are
applied in the real world. Examples, Self Checks, and Review Exercises increase
in difficulty from most basic to very challenging. The Programming Challenges
sections at the end of each chapter give students a chance to create longer, compre-
hensive programs from scratch and, if RAPTOR is used, they can run the programs
and see the results.

The text has been designed so that instructors can use it for students at various levels.
The core of the text consists of Chapter 1 and Chapters 3–7. Chapters 0 and 2 are
optional; Chapter 2 in particular covers material that is relatively complex and may
be skipped without consequence. Chapters 8–11 are independent of one another
except that some material in Chapter 9 is required to understand Chapter 11. Thus,
the text lends itself to a custom book adoption.

Chapter Summaries
●	 Chapter 0 provides an overview of general computer concepts.
●	 Chapter 1 discusses basic problem solving strategy and the essential compo-

nents of a computer program (input, processing, and output). A section on
data types introduces students to numeric, string, and Boolean types.

A01_VENI1535_06_GE_FM.indd 16 03/11/14 12:36 PM

 Preface 17

●	 Chapter 2 is dedicated to data representation. Students learn to convert
decimal numbers to binary and hexadecimal. The various ways to repre-
sent integers (unsigned, signed, two’s complement) as well as floating point
numbers are covered. IEEE standards are used to represent floating point
numbers in single- and double-precision. The material in this chapter is
completely independent from the rest of the book.

●	 Chapter 3 introduces the program development process, the principles
of modular design, pseudocode, and flowcharts. Documentation, testing,
syntax and logic errors, and an overview of the basic control structures are
covered.

●	 Chapter 4 covers decision (selection) structures including single-, dual- and
multiple-alternative structures, relational and logical operators, the ASCII
coding scheme, defensive programming, and menu-driven programs.

●	 Chapters 5 and 6 present a complete coverage of repetition structures
(loops). Chapter 5 focuses on the basic loop structures: pre- and post-test
loops, sentinel-controlled loops, counter-controlled loops, and loops for
data input, data validation, and computing sums and averages. Chapter 6
builds on the basics from the previous chapters to create programs that use
repetition structures in combination with decision structures, nested loops,
and random numbers.

●	 Chapter 7 covers one-dimensional, two-dimensional, and parallel arrays.
Representation of character strings as arrays is also discussed. The material
in this chapter has been expanded from the previous edition, including more
examples to assist students in understanding this difficult material.

●	 Chapter 8 covers searching and sorting. Two search techniques (serial and
binary searches) and two sort techniques (bubble and selection sorts) are
included with expanded coverage.

●	 Chapter 9 covers functions and modules, including the use of arguments
and parameters, value and reference parameters, passing by reference ver-
sus passing by value, and the scope of a variable. Built-in and user-defined
functions are covered. Recursion—an advanced topic—is discussed in some
depth but can be skipped if desired.

●	 Chapter 10 is about sequential data files. The discussion covers records and
fields and how to create, write, and read from sequential files. Topics also
include how to delete, modify, and insert records, and how to merge files.
Arrays are used in conjunction with data files for file maintenance. The con-
trol break processing technique is demonstrated in a longer program.

●	 Chapter 11 is an introduction to the concepts of object-oriented program-
ming and event-driven programming. The object-oriented material in
this chapter has been revised for better understandability. The material on
event-driven programming is new to this edition. A short introduction to
modeling languages, including UML is given. Object-oriented design topics
include classes (parent and child), objects, inheritance, polymorphism, pub-
lic versus private attributes and methods, and the use of constructors. The
material on event-driven programming includes the graphical user interface
and window components. Properties and methods for various window con-
trols are also covered.

A01_VENI1535_06_GE_FM.indd 17 03/11/14 12:36 PM

18 Preface

Many sections throughout the text are devoted to more advanced applications
and are optional. In particular, the Focus on Problem Solving sections develop
relatively complex program designs, which some instructors may find useful to
illustrate the chapter material and others may elect to skip to save time. RAPTOR
can be used as a tool to illustrate concepts by creating examples throughout the text
in RAPTOR but can also be used to create longer and more challenging, creative
programs.

Running With RAPTOR: A Flowcharting
Environment
In this edition, each chapter from Chapter 3 onward contains an optional section
entitled Running With RAPTOR. The section describes how to use RAPTOR
for that chapter’s material with screenshots and step-by-step instructions. Short
examples demonstrate how RAPTOR is used to work with the chapter’s content and
a longer program is developed. In many chapters the RAPTOR program is an imple-
mentation of the long program developed in the Focus on Problem Solving section.
The Running With RAPTOR sections can be skipped with no loss of continuity.
However, if used, the longer RAPTOR programs give students a real-life experience
by creating interesting, running programs including games, encryption, and more.

Features of the Text
In the Everyday World
Beginning with Chapter 1, each chapter starts with a discussion of how the mate-
rial in that chapter relates to familiar things (for example, “Arrays in the Everyday
World”) This material provides an introduction to the programming logic used
in that chapter through an ordinary and easily understood topic, and establishes a
foundation upon which programming concepts are presented.

Making It Work
The Making It Work sidebars provide information about how to implement con-
cepts in an actual high-level language, such as C++, Java, JavaScript, or Visual Basic.
These boxed sidebars appear throughout the text and are self-contained and optional.

What & Why
Often we conclude an Example with a short discussion about what would happen
if the program were run, or what would happen if something in the program were
changed. These What & Why sidebars help students deepen their understanding
of how programs run. They are useful in initiating classroom discussion.

Making
It Work

What
&Why?

A01_VENI1535_06_GE_FM.indd 18 03/11/14 12:36 PM

 Preface 19

Pointers and Style Pointers
The concepts of programming style and documentation are introduced in Chapter 3
and emphasized throughout. Other Pointers appear periodically throughout the
text. These short notes provide insight into the subject or specialized knowledge
about the topic at hand.

Examples
There are more than 200 numbered worked Examples in the text. The pseudocode
in the Examples includes line numbers for easy reference. Detailed line-by-line
discussions follow the code with sections entitled What Happened?

Focus on Problem Solving
Each chapter from Chapter 4 to the end includes a Focus on Problem Solving
section which presents a real-life programming problem, analyzes it, designs a pro-
gram to solve it, discusses appropriate coding considerations, and indicates how the
program can be tested. In the process, students not only see a review of the chapter
material, but also work through a programming problem of significant difficulty.
These sections are particularly useful to prepare students for a language-specific
programming course.

Exercises
Many new exercises have been added to this edition to correspond with new material.
Many exercises have been revised to permit them to be implemented with RAPTOR.
The text contains the following diverse selection:

●	 Self Checks at the end of each section include items that test students’
understanding of the material covered in that section (answers to Self
Checks are in Appendix C)

●	 Review Questions at the end of each chapter include questions of various
types that provide further review of the chapter material (Answers to the
questions are available on the instructor resource center).

●	 Programming Challenges at the end of each chapter require students
to design programs using the material learned in that chapter and earlier
chapters. All Programming Challenges can be implemented with RAPTOR.
Solutions to all Programming Challenges in RAPTOR are available on the
instructor resource center.

Style
Pointer

A01_VENI1535_06_GE_FM.indd 19 03/11/14 12:36 PM

20 Preface

Supplements

Instructor’s Supplements
Supplemental materials are available to qualified instructors at www.pearsonglobal
editions.com/Venit, including the following:

●	 PowerPoint Presentations for all Chapters
●	 Solutions to all Self Checks including RAPTOR implementations of select

problems
●	 Solutions to all Review Exercises including corresponding RAPTOR

programs
●	 RAPTOR programs corresponding to all Programming Challenges
●	 Testbank

For further information about obtaining instructor supplements, contact your cam-
pus Pearson Education sales representative.

Acknowledgments
The In the Everyday World essays, a unique feature of this book, were envisioned
and drafted by Bill Hammerschlag of Brookhaven College for the second edition,
and are expanded and revised in this edition.

The implementations of the code in C++, Visual Basic, Java, and Python from the
Focus on Problem Solving sections were created by Anton Drake from the Uni-
versity of Florida, presently a software developer at OPIE Technologies.

A special thanks to Martin Carlisle who created RAPTOR and remains eager and
generous with his support.

We want to extend our thanks to Matt Goldstein, our most supportive and caring
Editor; to Marilyn Lloyd, the most patient and understanding Production Manager
ever; to Haseen Khan, the Project Manager at Laserwords who works on the other
side of the world but feels like my next-door neighbor; and to the entire team at
Pearson Education, including Kayla Smith-Tarbox and Yez Alayan. We also want
to extend a special thank you to Michael Hirsch who initially brought us together
on this project; without Michael, none of this would have been possible.

—Elizabeth Drake
and Stewart Venit

I want to thank my coauthor, Stewart Venit. It’s a pleasure to work with him.
 Marilyn Lloyd and Haseen Khan are very special people; they answer my questions
with unfailing patience. I also want to thank my children, Anton and Severia, who
have always encouraged my desire—my need—to write. My grandsons, Justy and
Jacob, make me smile by being impressed by my work.

—Elizabeth Drake

A01_VENI1535_06_GE_FM.indd 20 03/11/14 12:36 PM

 Preface 21

I would like to thank my coauthor, Elizabeth Drake, for greatly enhancing and
improving this book in each of the last four editions. I am grateful to my wife
Corinne, who, over the course of my 35 year writing career, never complained
about the countless hours I spent camped in front of a computer screen. I also want
to thank the rest of my family for being my family: daughter Tamara, son-in-law
Cameron, and grandchildren Evelyn and Damian.

—Stewart Venit

The publishers would like to thank the following for their contribution to the
Global Edition:

Contributor
Ramesh Kolluru

Reviewers
Mohit P. Tahiliani
Ela Kashyap
Shivkant Kaushik

A01_VENI1535_06_GE_FM.indd 21 03/11/14 12:36 PM

A01_VENI1535_06_GE_FM.indd 22 03/11/14 12:36 PM

23

Introduction

In this introduction, we will discuss the history of computers and com-
puter hardware and software—the devices and programs that make a computer
work.

After reading this introduction, you will be able to do the following:
●	 Understand the evolution of computing devices from ancient Babylonia to

the twenty-first century
●	 Understand the components that make up a typical computer system: the

central processing unit, internal memory, mass storage, and input and
output devices

●	 Know the types of internal memory—RAM and ROM—and understand
their functions

●	 Know the types of mass storage: magnetic, optical, solid state, and online
storage

●	 Know the types of software used by a modern computer: application soft-
ware and system software

●	 Know the levels of programming languages: machine language, assembly
language, and high-level language

●	 Know the types of programming and scripting languages used to create
software

●	 Understand the distinction between programming and scripting languages

0

M00_VENI1535_06_GE_C00.indd 23 03/11/14 12:36 PM

24 Chapter 0 ● Introduction

Computers Everywhere

A century ago, a child would listen in wonder as his parents described what life
was like before cars, electricity, and telephones. Today, a child listens in wonder
as his parents describe what life was like without video games, smart phones, GPS
systems, and computers. Seventy years ago, electronic computers didn’t exist. Now,
we use computers daily. Computers are in homes, schools, and offices; in super-
markets and fast food restaurants; on airplanes and submarines. Computers are in
our phones, kitchen appliances, and cars. We carry them in our backpacks, pockets,
and purses. They are used by the young and old, filmmakers and farmers, bankers
and baseball managers. By taking advantage of a wealth of diverse and sophisticated
software (programs and apps), we are able to use computers almost limitlessly for
education, communication, entertainment, money management, product design
and manufacture, and business and institutional processes.

In the
Everyday

World

0.1 A Brief History of Computers
Calculators, devices used to increase the speed and accuracy of numerical compu-
tations, have been around for a long time. For example, the abacus, which uses rows
of sliding beads to perform arithmetic operations, has roots that date back more
than 5,000 years to ancient Babylonia. More modern mechanical calculators, using
gears and rods, have been in use for almost 400 years. In fact, by the late nineteenth
century, calculators of one sort or another were relatively commonplace. However,
these machines were by no means computers as we use the word today.

What Is a Computer?
A computer is a mechanical or an electronic device that can efficiently store,
retrieve, and manipulate large amounts of information at high speed and with great
accuracy. Moreover, it can execute tasks and act upon intermediate results without
human intervention by carrying out a list of instructions called a program.

Although we tend to think of the computer as a recent development, Charles
Babbage, an Englishman, designed and partially built a true computer in the mid-
1800s. Babbage’s machine, which he called an Analytical Engine, contained hun-
dreds of axles and gears and could store and process 40-digit numbers. Babbage was
assisted in his work by Ada Augusta Byron, the daughter of the poet Lord Byron.
Ada Byron grasped the importance of the invention and helped to publicize the
project. A major programming language (Ada) was named after her. Unfortunately,
Babbage never finished his Analytical Engine. His ideas were too advanced for the
existing technology, and he could not obtain enough financial backing to complete
the project.

Serious attempts to build a computer were not renewed until nearly 70 years
after Babbage’s death. Around 1940, Howard Aiken at Harvard University, John
Atanasoff, and Clifford Berry at Iowa State University built machines that came close
to being true computers. However, Aiken’s Mark I could not act independently on

M00_VENI1535_06_GE_C00.indd 24 03/11/14 12:36 PM

 0.1 A Brief History of Computers 25

its intermediate results, and the Atanasoff-Berry computer required the frequent
intervention of an operator during its computations.

Just a few years later in 1945, a team at the University of Pennsylvania, led by
John Mauchly and J. Presper Eckert, completed work on the world’s first fully
operable electronic computer. Mauchly and Eckert named it ENIAC, an acronym
for Electronic Numerical Integrator and Computer. ENIAC (see Figure 0.1) was
a huge machine. It was 80 feet long, 8 feet high, weighed 33 tons, contained over
17,000 vacuum tubes in its electronic circuits, and consumed 175,000 watts of elec-
tricity. For its time, ENIAC was a truly amazing machine because it could accu-
rately perform up to 5,000 additions per second. However, by current standards, it
was exceedingly slow. A modern run-of-the-mill personal computer can exceed 100
million operations per second!

For the next decade or so, all electronic computers used vacuum tubes (see
Figure 0.2) to do the internal switching necessary to perform computations. These
machines, which we now refer to as first-generation computers, were large by mod-
ern standards, although not as large as ENIAC. They required a climate-controlled
environment and a lot of tender love and care to keep them operating. By 1955,
about 300 computers—built mostly by IBM and Remington Rand—were being
used, primarily by large businesses, universities, and government agencies.

Figure 0.1 The ENIAC computer

Source: U.S. Army

M00_VENI1535_06_GE_C00.indd 25 03/11/14 12:36 PM

26 Chapter 0 ● Introduction

By the late 1950s, computers had become much faster and more reliable. The most
significant change at this time was that the large, heat-producing vacuum tubes
were replaced by relatively small transistors. The transistor (see Figure 0.3) is one
of the most important inventions of the twentieth century. It was developed at Bell
Labs in the late 1940s by William Shockley, John Bardeen, and Walter Brattain,
who later shared a Nobel Prize for their achievement. Transistors are small and
require very little energy, especially compared to vacuum tubes. Therefore, many
transistors can be packed close together in a compact enclosure.

In the early 1960s, Digital Equipment Corporation (DEC) took advantage of small,
efficient packages of transistors called integrated circuits to create the minicom-
puter, a machine roughly the size of a four-drawer filing cabinet. Because these
computers not only were smaller but also less expensive than their predecessors,
they were an immediate success. Nevertheless, sales of larger computers, now
called mainframes, also rapidly increased. The computer age had clearly arrived
and the industry leader was the IBM innovative System 360.

Personal Computers
Despite the increasing popularity of computers, it was not until the late 1970s that
the computer became a household appliance. This development was made possible
by the invention of the microchip (see Figure 0.4) in the 1960s. A microchip is a
piece of silicon about the size of a postage stamp, packed with thousands of electronic
components. The microchip and its more advanced cousin, the microprocessor,
led to the creation of the world’s first personal computer (PC) in 1974. The PC

Figure 0.2 A vacuum tube

Figure 0.3 An early transistor

M00_VENI1535_06_GE_C00.indd 26 03/11/14 12:37 PM

 0.1 A Brief History of Computers 27

was relatively inexpensive compared to its predecessors and was small enough to
fit on a desktop. This landmark computer, the Altair 8800 microcomputer, was
unveiled in 1975. Although it was a primitive and not a very useful machine, the
Altair inspired thousands of people, both hobbyists and professionals to become
interested in PCs. Among these pioneers were Bill Gates and Paul Allen, who later
founded Microsoft Corporation, now one of the world’s largest companies.

Apple Computers and the IBM PC
The Altair also captured the imagination of two young Californians, Stephen
Wozniak and Steven Jobs. They were determined to build a better, more use-
ful computer. They founded Apple Computer, Inc., and in 1977 they introduced
the Apple II, which was an immediate hit. With the overwhelming success of this
machine and Tandy Corporation’s TRS-80, companies that were manufacturing
larger minicomputers and mainframes began to notice. In 1981, IBM introduced
the popular IBM PC (see Figure 0.5), and the future of the PC was assured.

Figure 0.4 The microchip

Figure 0.5 The IBM PC, introduced in 1981, is an antique now!

M00_VENI1535_06_GE_C00.indd 27 03/11/14 12:37 PM

28 Chapter 0 ● Introduction

Many companies hoping to benefit from the success of the IBM PC, introduced com-
puters that could run the same programs as the IBM, and these “IBM compatibles”
soon dominated the market. Even the introduction of Apple’s innovative and easy-
to-use Macintosh in 1984 could not stem the tide of the IBM compatibles. These
computers, virtually all of which make use of Microsoft’s Windows operating system,
have also spawned a huge array of software (computer programs) never dreamed
of by the manufacturers of the original mainframes. This software includes word
processors, photo editing programs, Web browsers, spreadsheet programs, database
systems, presentation graphics programs, and a seemingly infinite variety of com-
puter games. However, while in 2000 the Windows operating system commanded
more than 95% of the market share, today’s mobile devices, such as smart phones
and tablets, have reduced Microsoft’s domination drastically with Google’s Android
operating system and the Apple operating system providing strong competition.

Today’s Computers
Today the computer market comprises a vast array of machines. Personal comput-
ers are everywhere and range in price from a few hundred to a few thousand dol-
lars. For the most part, their manufacturers are billion dollar companies like IBM,
Dell, Hewlett-Packard, and Apple. Although PCs are small and inexpensive, they
produce a remarkable amount of computing power. Today’s tablets, which can
weigh less than a pound and fit into a handbag, are far more powerful than the most
advanced mainframes of the mid-1970s (see Figure 0.6).

Minicomputers have also found their niche. Unlike PCs, these machines can be used
by a number of people (typically 16 or more) working simultaneously at separate
and remote terminals. Each terminal consists of a keyboard and a display screen.
Minicomputers have become the mainstay of many small businesses and universi-
ties, but mainframe computers are by no means dinosaurs. These relatively large
and costly machines supply users with tremendous power to manipulate informa-
tion. Supercomputers (see Figure 0.7) are even more powerful than mainframes
and can process well over 1 billion instructions per second. For a special effects
company like Industrial Light and Magic or a government agency like the Internal
Revenue Service, there is no substitute for a large mainframe or supercomputer.

Figure 0.6 Today’s laptop and tablet computers

M00_VENI1535_06_GE_C00.indd 28 03/11/14 12:37 PM

